Алгебраические и теоретико-модельные свойства частично упорядоченных структур

Loading...
Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Suleyman Demirel University

Abstract

Объектом исследования являются частично упорядоченные структуры, модульные подмножества и функции в этих структурах, теория моделей первого порядка, алгебры. Цель работы - изучение вариантов о-минимальности для частично упорядоченных алгебраических структур, в том числе решеточно и булево упорядоченных структур. Методами исследований являются: методы классической математической логики; комбинаторные методы; методы теории моделей; методы алгебры. В процессе работы исследовались теоретико-модельные и алгебраические свойства частично упорядоченных структур, ALIA-алгебры. Все полученные результаты являются новыми, носят фундоментальный, теоретический характер и заключается в следующем: 1. Доказана локальная монотонность и непрерывность одноместных определимых функций, определимых частично упорядоченных группах. 2. Доказана коммутативность ро-максимально частично упорядоченных групп. 3. Предложено новое понятие выпухлого множества для частичных порядков. 4. Найдена формула полилинейной части для ALIA-алгебр.

Description

Keywords

Логика предикатов первого порядка, упорядоченные структуры, слабая о-минимальность, теория моделей, ALIA-алгебра

Citation

Алгебраические и теоретико-модельные свойства частично упорядоченных структур, Вербовский В.В., Туленбаев К.М., 2013