Exceptional sets in homogeneous spaces and Hausdorff dimension

dc.contributor.authorKadyrov Sh.
dc.date.accessioned2025-08-12T08:57:16Z
dc.date.available2025-08-12T08:57:16Z
dc.date.issued2015
dc.description.abstractIn this paper, we study the dimension of a family of sets arising in open dynamics. We use exponential mixing results for diagonalizable flows in compact homogeneous spaces X to show that the Hausdorff dimension of set of points that lie on trajectories missing a particular open ball of radius r is at most dim X + C rdim X log r , where C > 0 is a constant independent of r > 0. Meanwhile, we also describe a general method for computing the least cardinality of open covers of dynamical sets using volume estimates.
dc.identifier.citationKadyrov Sh / Exceptional sets in homogeneous spaces and Hausdorff dimension / Dynamical Systems An International Journal / 2015
dc.identifier.issn1468-9367
dc.identifier.urihttps://repository.sdu.edu.kz/handle/123456789/1867
dc.language.isoen
dc.publisherDynamical Systems An International Journal
dc.subjectexponential mixing
dc.subjecthomogeneous dynamics
dc.subjectHausdorff dimension
dc.titleExceptional sets in homogeneous spaces and Hausdorff dimension
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Exceptional sets in homogeneous spaces and Hausdorff dimension.pdf
Size:
469.84 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
12.6 KB
Format:
Item-specific license agreed to upon submission
Description: