Cardinality of survival set for the chaotic Tent map with holes

dc.contributor.authorAitu N.
dc.contributor.authorBayadilova G.
dc.date.accessioned2024-05-03T10:14:08Z
dc.date.available2024-05-03T10:14:08Z
dc.date.issued2020
dc.description.abstractAbstract. The aim of this paper is to give an overview of the dynamics of one dimensionaldiscrete dynamical systems: Tent map family T_3, Doubling map E_2 and shift map σ are investigated. Let I-intervals(Holes) lie in the interval [0,1) and let E_2 be a Doubling map. The survivor set Ω(I) :={x∈[0,1) : E_nx /∈ I, n≥0}. Depending on location and size of the intervals we will characterize the survivor set Ω(I) infinite or finite. Also we will show conjugacy of some maps that used in this paper. By using conjugacy of functions we will show that the Survivor set is infinite or finite in another composition of maps. The Cantor sets Λ that occur as non-survivor sets for c >2 from Tent map family T_c.[1]
dc.identifier.citationAitu N , Bayadilova G / Cardinality of survival set for the chaotic Tent map with holes / 2020 International Young Scholars Workshop
dc.identifier.issn978-601-7537-98-2
dc.identifier.urihttps://repository.sdu.edu.kz/handle/123456789/1353
dc.language.isoen
dc.publisher2020 International Young Scholars Workshop
dc.subjectdynamical systems
dc.subjectsymbolic dynamics
dc.subjectinterval maps
dc.subjectsurvivor sets
dc.subjectchaos
dc.subjectopen systems
dc.subjectirregular sets
dc.subject2020 International Young Scholars Workshop
dc.subject№9
dc.titleCardinality of survival set for the chaotic Tent map with holes
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
185-1-377-1-10-20200611.pdf
Size:
472.96 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
13.85 KB
Format:
Item-specific license agreed to upon submission
Description: