Quasi-Associative Algebras

dc.contributor.authorAskar Dzhumadildaev
dc.date.accessioned2025-11-04T06:31:57Z
dc.date.available2025-11-04T06:31:57Z
dc.date.issued2007
dc.description.abstractThis paper investigates a class of algebras obtained from associative algebras by introducing a q-commutator defined as a * b = ab + qba, where q belongs to a field K with characteristic not equal to 2 or 3, and q² is not equal to 0 or 1. Using this commutator, we construct algebras that form a variety characterized by a q-associativity identity. When the parameter satisfies q² − 4q + 1 ≠ 0, this identity alone describes the entire variety of q-associative algebras. However, when q² − 4q + 1 = 0, the q-associativity identity must be supplemented by the Lie-admissibility identity. In this exceptional case, the resulting variety is equivalent to the class of alternative algebras. Therefore, q-associative algebras form a structural link between associative, Lie-admissible, and alternative algebras, demonstrating how small changes in the commutator parameter q can transform fundamental algebraic properties.
dc.identifier.citationAskar Dzhumadildaev / Quasi-Associative Algebras / Suleyman Demirel University / Сду хабаршысы, 2007
dc.identifier.urihttps://repository.sdu.edu.kz/handle/123456789/2131
dc.language.isoen
dc.publisherSuleyman Demirel University
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectquasi-associative algebras
dc.subjectq-commutator
dc.subjectalgebraic identities
dc.subjectassociators
dc.subjectLie-admissible algebras
dc.subjectalternative algebras
dc.titleQuasi-Associative Algebras
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhumadildaev A.pdf
Size:
2.17 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: