CANTOR SETS AND TOTAL SELF-SIMILARITY
dc.contributor.author | Kadyrov Sh. | |
dc.contributor.author | Keulimzhayev A. | |
dc.date.accessioned | 2025-08-12T09:36:06Z | |
dc.date.available | 2025-08-12T09:36:06Z | |
dc.date.issued | 2025 | |
dc.description.abstract | We study overlapping Cantor sets with parameter and classify the situations when these fractal sets are totally self-similar. More precisely, we consider iterated function system consisting of three functions , and and the fractal set it generates in the real line. We define what totally self-similar means and show for that the fractal set is totally self-similar if and only if it is in the form for some positive integer . We mainly rely on the recent work of Dajani, Kong, and Yao where they consider the analogous problem for . | |
dc.identifier.citation | Kadyrov Sh , Keulimzhayev A / CANTOR SETS AND TOTAL SELF-SIMILARITY / ISCIENCE.IN.UA «Актуальные научные исследования в современном мире» / 2025 | |
dc.identifier.issn | 2524-0986 | |
dc.identifier.uri | https://repository.sdu.edu.kz/handle/123456789/1869 | |
dc.language.iso | en | |
dc.publisher | ISCIENCE.IN.UA «Актуальные научные исследования в современном мире» | |
dc.subject | total self-similarity | |
dc.subject | Cantor sets | |
dc.subject | fractals | |
dc.title | CANTOR SETS AND TOTAL SELF-SIMILARITY | |
dc.type | Article |