CANTOR SETS AND TOTAL SELF-SIMILARITY

dc.contributor.authorKadyrov Sh.
dc.contributor.authorKeulimzhayev A.
dc.date.accessioned2025-08-12T09:36:06Z
dc.date.available2025-08-12T09:36:06Z
dc.date.issued2025
dc.description.abstractWe study overlapping Cantor sets with parameter and classify the situations when these fractal sets are totally self-similar. More precisely, we consider iterated function system consisting of three functions , and and the fractal set it generates in the real line. We define what totally self-similar means and show for that the fractal set is totally self-similar if and only if it is in the form for some positive integer . We mainly rely on the recent work of Dajani, Kong, and Yao where they consider the analogous problem for .
dc.identifier.citationKadyrov Sh , Keulimzhayev A / CANTOR SETS AND TOTAL SELF-SIMILARITY / ISCIENCE.IN.UA «Актуальные научные исследования в современном мире» / 2025
dc.identifier.issn2524-0986
dc.identifier.urihttps://repository.sdu.edu.kz/handle/123456789/1869
dc.language.isoen
dc.publisherISCIENCE.IN.UA «Актуальные научные исследования в современном мире»
dc.subjecttotal self-similarity
dc.subjectCantor sets
dc.subjectfractals
dc.titleCANTOR SETS AND TOTAL SELF-SIMILARITY
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
elibrary_41348920_79685952.pdf
Size:
509.39 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
12.6 KB
Format:
Item-specific license agreed to upon submission
Description: