ESCAPE OF MASS AND ENTROPY FOR DIAGONAL FLOWS IN REAL RANK ONE SITUATIONS

dc.contributor.authorEinsiedler M.
dc.contributor.authorKadyrov S.
dc.contributor.authorPohl A.
dc.date.accessioned2025-08-12T05:47:52Z
dc.date.available2025-08-12T05:47:52Z
dc.date.issued2014
dc.description.abstractLet G be a connected semisimple Lie group of real rank 1 with finite center, let Γ be a non-uniform lattice in G and a any diagonalizable element in G. We investigate the relation between the metric entropy of a acting on the homogeneous space Γ\G and escape of mass. Moreover, we provide bounds on the escaping mass and, as an application, we show that the Hausdorff dimension of the set of orbits (under iteration of a) which miss a fixed open set is not full.
dc.identifier.citationEinsiedler M , Kadyrov S , Pohl A / ESCAPE OF MASS AND ENTROPY FOR DIAGONAL FLOWS IN REAL RANK ONE SITUATIONS / ISRAEL JOURNAL OF MATHEMATICS / 2014
dc.identifier.urihttps://repository.sdu.edu.kz/handle/123456789/1858
dc.language.isoen
dc.publisherISRAEL JOURNAL OF MATHEMATICS
dc.subjectVariation of height
dc.subjectCoordinate system for G
dc.subjectCommon cusp excursions of nearby points
dc.titleESCAPE OF MASS AND ENTROPY FOR DIAGONAL FLOWS IN REAL RANK ONE SITUATIONS
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11856-015-1252-y.pdf
Size:
461.65 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
12.6 KB
Format:
Item-specific license agreed to upon submission
Description: