Removable Singularities of Harmonic Functions on Stratified Sets
Loading...
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract
There are deep historical connections between symmetry, harmonic functions, and stratified sets. In this article, we prove an analog of the removable singularity theorem for bounded harmonic functions on stratified sets. The harmonic functions are understood in the sense of the soft Laplacian. The result can become one of the main technical components for extending the well-known Poincaré–Perron’s method of proving the solvability of the Dirichlet problem for the soft Laplacian.
Description
Keywords
stratified measure, soft Laplacian, mean value
Citation
Dairbekov N.S , Penkin O.M , Savasteev D.V / Removable Singularities of Harmonic Functions on Stratified Sets / MDPI / 2024