Forecasting Student Academic Performance Using Machine Learning
Loading...
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
SDU University
Abstract
Educational data mining depends on accurate student academic outcome forecasting to detect studentswho need help early and receive specific support. Traditional linear models have been used extensively yetthey fail to detect the intricate non-linear patterns which exist in student achievement data. The evaluationof machine learning algorithms and their features for student outcome prediction in Portuguese secondaryeducation remains insufficient because of missing systematic assessments. The research investigates howLinear Regression and Random Forest and K-Nearest Neighbors perform when predicting Portugueselanguage grades from 649 student records containing 30 demographic and social and academic attributes.The evaluation of model performance used three established metrics which included Mean Squared Error(MSE) and R-Squared (R²) and Mean Absolute Error (MAE). The results showed Linear Regressionproduced the most accurate predictions through its lowest MSE (9.00) and MAE (2.30) values but its weakR² value (0.01) indicated poor explanatory power. The error rates of Random Forest matched those of LinearRegression (MSE = 9.48 and MAE = 2.34) yet its negative R² (-0.04) indicated poor generalization becauseof irrelevant features and suboptimal hyperparameters. The KNN model showed the worst results (MSE =11.10 and MAE = 2.57 and R² = -0.21) because it failed to detect important patterns without additionaloptimization. The results show that educational prediction tasks require both optimal feature selectionand parameter adjustment for successful results. The research shows that linear models perform betterthan complex methods in specific situations yet optimized non-linear models demonstrate superior abilityto understand student achievement complexity. The research provides essential guidelines for developingbetter feature engineering and machine learning approaches to predict educational results
Description
Keywords
machine learning education, education artificial intelligence, edtech, AI in edtech, predictive power education
Citation
Danial Polat, Azamat Serek / Forecasting Student Academic Performance Using Machine Learning / Journal of Emerging Technologies and Computing (JETC), Vol. 2 No. 2 / SDU University / 2025