AUTOMATIC ERROR CORRECTION: EVALUATING PERFORMANCE OF SPELL CHECKER TOOLS

dc.contributor.authorTolegenova A.
dc.date.accessioned2023-12-26T03:58:16Z
dc.date.available2023-12-26T03:58:16Z
dc.date.issued2021
dc.description.abstractAbstract. Spell checking is the task of detecting and correcting spelling errors in text and is one of the most sought-after processes in NLP. There are many open-source toolkits for checking and correcting errors in the text. To test how effective these tools are, in this article I have presented an evaluation of three types of tools as NeuSpell, SymSpell and Hunspell. SymSpell showed a high speed of 2480, this is an indicator of how fast it works than others. And NeuSpell achieved the lowest error rate of 0.80%. The results show the disadvantages and advantages of all algorithms, and that there is still room for improvement.
dc.identifier.citationA. Tolegenova / AUTOMATIC ERROR CORRECTION: EVALUATING PERFORMANCE OF SPELL CHECKER TOOLS / СДУ хабаршысы - 2021
dc.identifier.issn2709-2631
dc.identifier.urihttps://repository.sdu.edu.kz/handle/123456789/1044
dc.language.isoen
dc.publisherСДУ хабаршысы - 2021
dc.subjectNLP
dc.subjectopen-source tools
dc.subjectspell checking
dc.subjectdetect
dc.subjectcorrect
dc.subjectСДУ хабаршысы - 2021
dc.subject№1
dc.titleAUTOMATIC ERROR CORRECTION: EVALUATING PERFORMANCE OF SPELL CHECKER TOOLS
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2022.1 жаратылыстану-11-17.pdf
Size:
3.15 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
13.85 KB
Format:
Item-specific license agreed to upon submission
Description: