DATA COLLECTION OF HAND GESTURES ON A HORIZONTAL SURFACE USING MEDIAPIPE LIBRARY

dc.contributor.authorSarybay O.
dc.date.accessioned2023-12-26T04:37:05Z
dc.date.available2023-12-26T04:37:05Z
dc.date.issued2022
dc.description.abstractAbstract. The horizontal hand gesture recognition is an innovative, cheaper way for human-computer interaction. Currently, most researchers work with sensors, devices for hand gesture recognition, which require more resources. Instead, the presented horizontal method for hand gesture signal recognition by frames, with trained model algorithms. A key element of this work is the research of a recognition algorithm using only a single camera and collecting dataset to train a hand recognition model. In the presented framework, the hand detection works with computer vision (CV) algorithms, in general MediaPipe as a converting blue, green, red (BGR) image to red, green, blue (RGB) before processing. There are handedness and hand landmarks on the image as a result of a hand detection. Each point of the landmark has coordination x, y. z values. The collected dataset will be used to train a model with machine learning (ML) or neural network algorithms to develop this project as a hand gesture recognition project.
dc.identifier.citationO. Sarybay / DATA COLLECTION OF HAND GESTURES ON A HORIZONTAL SURFACE USING MEDIAPIPE LIBRARY / СДУ хабаршысы - 2022
dc.identifier.issn2709-2631
dc.identifier.urihttps://repository.sdu.edu.kz/handle/123456789/1046
dc.language.isoen
dc.publisherСДУ хабаршысы - 2022
dc.subjectCV
dc.subjectML
dc.subjectMediaPipe
dc.subjectneural networks
dc.subjecthand gesture
dc.subjectBGR
dc.subjectRGB
dc.subjecthuman-computer interaction
dc.subjectСДУ хабаршысы - 2022
dc.subject№1
dc.titleDATA COLLECTION OF HAND GESTURES ON A HORIZONTAL SURFACE USING MEDIAPIPE LIBRARY
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2022.1 жаратылыстану-27-37 (2).pdf
Size:
5.71 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
13.85 KB
Format:
Item-specific license agreed to upon submission
Description: