<Repository logo
  • English
  • Қазақ
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • English
  • Қазақ
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of SDU repository
  • GuideRegulations
  1. Home
  2. Browse by Author

Browsing by Author "Suraiyo Raziyeva"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Bias and Fairness in Automated Loan Approvals: A Systematic Review of Machine Learning Approaches
    (SDU University, 2025) Suraiyo Raziyeva; Meraryslan Meraliyev
    Artificial intelligence (AI) is increasingly transforming credit approval processes, enabling financial institutions to assess risk more efficiently and at greater scale. As these systems become more embedded in lending decisions, concerns around fairness, bias, and accountability have grown significantly. Many of these concerns stem from the use of historical data, proxy variables, and model optimization choices that can unintentionally reinforce existing social and economic inequalities. This work presents a systematic overview of the types and sources of bias in AI - driven loan approval systems and critically examines how machine learning techniques attempt to address them. It also highlights emerging solutions, including explainable AI, federated learning, human-in-the-loop frameworks, and intersectional fairness approaches. Despite ongoing advancements, unresolved challenges remain - particularly the need for dynamic fairness monitoring and for addressing intersectional biases affecting individuals from multiple marginalized groups. To bridge these gaps, the paper emphasizes the importance of interdisciplinary collaboration among AI developers, regulatory bodies, and social scientists. It advocates embedding fairness as a core design principle in the development and deployment of future AI systems. Overall, this study contributes to the growing effort to develop more transparent, inclusive, and socially responsible financial technologies.

Find us

  • SDU Scientific Library Office B203,
  • Abylaikhana St. 1/1 Kaskelen, Kazakhstan

Call us

Phone: +7 (727) 307 9565 (Int. 183)

Mail us

E-mail: repository@sdu.edu.kz
logo

Useful Links

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

Follow us

Springshare
ROAR
OpenDOAR

Copyright © 2023, All Right Reserved SDU University